
GOMORY-HU TREES : THEORY

AND APPLICATIONS

Koutris Paraschos and Vasileios Syrgkanis

OUTLINE

• Basic definitions

• Why needed?

• Gomory-Hu Construction Algorithm• Gomory-Hu Construction Algorithm

• A Complete GH Tree Construction Example

• Proof Of Correctness

• Minimum K-Cut Problem

• Implementation

BASIC DEFINITIONS

CUT DEFINITION

• Let G = (V,E) denote a graph and c(e) a weight

function on its edges.

• A cut is a partition of the vertices V into two sets

S and T.S and T.

• Any edge (u,v) ∈ E with u ∈ S and v ∈ T is said to

be crossing the cut and is a cut edge.

• The capacity of a cut is the sum of weights of

the edges crossing the cut.

U-V CUT

• A u-v cut is a split of the nodes into two disjoint

sets U and V, such that u ∈ U, v ∈ V.

MINIMUM WEIGHT U-V CUT • MINIMUM WEIGHT U-V CUT

Given a graph G = (V,E) and two terminals u,v ∈ V,

find the minimum u-v cut.

FLOW DEFINITION

• Given a directed graph G(V,E) in which every edge

(u,v) ∈ E has a non-negative, real-valued capacity

c(u,v).

• We distinguish two vertices: a source s and a sink t.We distinguish two vertices: a source s and a sink t.

• A flow network is a real function f: V×V → R with the

following properties for all nodes u and v:

1. Capacity constraints: f(u,v) ≤ c(u,v)

2. Skew symmetry: f(u,v) = - f(v,u)

3. Flow conservation: ,unless u=s or u=t

MAX-FLOW

• The maximum flow problem is to find a feasible

flow through a single-source, single-sink flow

network that is maximum.

• Max-Flow can be computed in polynomial time• Max-Flow can be computed in polynomial time

(e.g. Edmonds-Karp algorithm).

• MAX-FLOW MIN-CUT THEOREM

• The maximum amount of flow is equal to the capacity

of the minimal cut.

• Thus, the min s-t cut is also computed in polynomial

time.

IMPORTANT PUBLICATIONS ON MAX-FLOW

MIN-CUT PROBLEMS

• Ford and Fulkerson, Maximal Flow through a

network (1956).

Introduction of basic concepts of flow and cut. Max

flow min-cut theorem.flow min-cut theorem.

• Mayeda, Terminal and Branch Capacity Matrices

of a Communication Net (1960).

Multiterminal problem.

• Chien, Synthesis of a Communication Net (1960).

Synthesis of multiterminal flow network.

WHY NEEDED ?

BASIC PROPERTIES OF CUTS

• We are interested in finding maximal flow/minimal
cut values between all pairs of nodes in a graph G =
(V,E), where n = |V|. Any pair of nodes can serve as
the source and the sink.

• How many min-cut computations are needed?

• You would think

• But in fact, n-1 computations are enough!!

why? (PROOF #1)

FLOW EQUIVALENT GRAPHS

• Two graphs G = (V, E) and G’ = (V, E’) are said to
be flow equivalent iff for each pair of vertices u,v
∈ V, the minimum u-v cut (maximal u-v flow) in
G is the same as in G’.

• It turns out that there always exist a G’ which is
a tree (Gomory Hu Tree)!!

• Notice that the n-1 edges of the tree correspond
to the n-1 distinct min-cuts in G.

GOMORY-HU (GH) TREE
R.E. GOMORY AND T.C. HU, MULTI-TERMINAL NETWORK FLOWS (1961).

• Given a graph G = (V,E) with a capacity function

c, a cut-tree T = (V,F) obtained from G is a tree

having the same set of vertices V and an edge set

F with a capacity function c’ verifying theF with a capacity function c’ verifying the

following properties:

1. Equivalent flow tree: for any pair of vertices s

and t, fs,t in G is equal to fs,t in T , i.e., the smallest

capacity of the edges on the path between s and t in

T.

2. Cut property: a minimum cut Cs,t in T is also a

minimum cut in G.

GOMORY-HU CONSTRUCTION

ALGORITHM

OUTLINE

• The algorithm maintains a partition of V, (S1, S2,

…, St) and a spanning tree T on the vertex set {

S1, S2, …, St }.

• Let w’ be the function assigning weights to the• Let w’ be the function assigning weights to the

edges of T.

• On each iteration, T satisfies the following

invariant :

For any edge (Si, Sj) in T, there are vertices a and b

in Si and Sj respectively such that w’ (Si, Sj) = f(a,b)

and the cut defined by edge (Si, Sj) is a minimum a-b

cut in G.

INITIAL STEP

• The algorithm starts with a trivial partition V.

• Proceeds in n-1 iterations.

b c

a

b c

d

ef

10

4

2

2
2

5

7

4

3

8

3

Initial Partition =

(V={a,b,c,d,e,f})

ITERATION (1)

• Select a set Si in the partition such that |Si|≥ 2.

• Let u and v be two distinct vertices of Si.

Select d and e

a

c

d

e

18

6 5

7

4

5

Partition3 = ({a}, {b}, {c,d,e}, {f})

17

f

7

6

11

18

b
9

8

10

Select d and e

13
2

ITERATION (2)

• Root the current tree at Si and consider the

subtrees rooted at the children of Si.

• Collapse each of the subtrees into a single vertex

to obtain graph G’ (G’ also contains all vertices ofto obtain graph G’ (G’ also contains all vertices of

Si).

c

d

e

6 5

7

4

5

Collapse all other sub-

trees to supernodes

2

ITERATION (3)

• Find a minimum u-v cut in G’.

• Let (A, B) the partition of the vertices of G’

defining the cut, with u ∈ A, v ∈ B.

c

d

e

6 5

7

4

5

Compute min d-e cut

2

ITERATION (4)

• Compute Si
u = Si∩ A and Si

v = Si∩ B.

• Refine the current partition by replacing Si with

the two sets Si
u and Si

v.

• The new tree has an edge (S u, S v) with weight• The new tree has an edge (Si
u, Si

v) with weight

equal to the weight of the cut.

c

d

e

6 5

7

4

5

Create new Gomory-Hu edge

2 14

ITERATION (5)

• How are the other nodes aranged at the tree after

the splitting?

• Consider a subtree T’ incident at S in T. Assume• Consider a subtree T’ incident at Si in T. Assume

that the collapsed node corresponding to T’ lies in

A.

• We connect T’ by an edge with Si
u.

• The weight of the edge is the same as the weight

of the edge connecting T’ to Si.

• All the other edges retain their weights.

ITERATION (6)

c

Attach the previous sub-

tree to the cut that it c

e

6 5

7

4

5

tree to the cut that it

belongs

2 14

18 17 13

TERMINATION

• The algorithm terminates when the partition

consists of singleton vertices.

• Thus, after exactly n-1 iterations!

A COMPLETE GH TREE

CONSTRUCTION EXAMPLE

b c

10

4

2
5

4

INITIALIZATION

a d

ef

2

2

7

4

3

8

3

Initial Partition = (V={a,b,c,d,e,f})

b c4

ITERATION 1

a
d

ef

10
2

2

2

5

7

4

3

8

3

Select b and f

c

4

ITERATION 1

a

b

d

ef

10
2

2

5

7

4

3

Partition1 = ({a,b}, {c,d,e,f})

9

8

17

4

2

11

c

4

Select a,b

ITERATION 2

a

b

d

ef

10
2

2

5

7

4

3

Partition1 = ({a,b}, {c,d,e,f})

9

8

17

4

2

11

c

5
4

ITERATION 2

a

d

ef

18
2

2

5

7

4

3Partition2 = ({a}, {b}, {c,d,e,f})

17

4

2

11

18

b
9

8

10

cSelect c and f

ITERATION 3

a

d

ef

18
2

2

5

7

4

3
Partition2 = ({a}, {b}, {c,d,e,f})

17

4

2

11

18

b
9

8

10

c

6 5

ITERATION 3

a
d

e

18

6

7

4

5

Partition3 = ({a}, {b}, {c,d,e}, {f})

17

f

7

6

11

18
b 9

8

10

13
2

c

6 5

4
b 910

Select d and e

ITERATION 4

a
d

e

18

7

4

5

Partition3 = ({a}, {b}, {c,d,e}, {f})

17

f

7

6

11

18
b 9

8

10

13
2

c

6
4

5

ITERATION 4

a d
18 14

7

Partition4 = ({a}, {b}, {c, e}, {d}, {f})

17

f

7

6

11

18
b 9

8

10

13

e

4

5

2 14

Select c and e
c

6
4

5

ITERATION 5

a d
18 14

7

Partition4 = ({a}, {b}, {c, e}, {d}, {f})

17

f

7

6

11

18
b 9

8

10

13

e

4

5

2 14

18 1418
b 910

c

14

15

15

ITERATION 5

a
d

18 14

7

Partition5 = ({a}, {b}, {c}, {e}, {d}, {f})

17

f

7

6

11

18
b 9

8

10

13

e

6

4

5

2

5

14

FINAL GH TREE

Final Gomory-Hu Tree

18 17 13

14

15

PROOF OF CORRECTNESS

BASIC LEMMAS (1)

• Let f(u,v) denote the weight of a minimum u-v

cut in G.

• For u, v, w ∈ V, the following inequality holds:

f(u,v) ≥ min { f(u,w), f(w,v) }

• Generalization:

For u, v, w1, w2, .., wr ∈ V:

f(u,v) ≥ min { f(u, w1), f(w1, w2), …, f(wr, v) }

PROOF #2

BASIC LEMMAS (2)

• Let (A, A’) be a minimum s-t cut, s ∈ A.

• Choose any two vertices x,y ∈ A.

• Obtain graph G’ by collapsing all vertices of A’ to a
single vertex vA’.A’

• The weight of an edge (a, vA’) is defined to be the sum
of the weights of (a,b), where b ∈ A’.

• A minimum x-y cut in G’ defines a minimum x-y cut
in G !!

• Thus, condensing A’ to a single node does not affect
the value of a minimum cut from x to y.

PROOF #3

PROOF

• INVARIANT (PROOF #4):

• For any edge (Si, Sj) in T, there are vertices a and b

in Si and Sj respectively such that

1. w’ (Si, Sj) = f(a,b)1. w’ (Si, Sj) = f(a,b)

2. The cut defined by edge (Si, Sj) is a minimum a-b

cut in G.

• The first property satisfies the first GH condition

(equivalent flow tree).

• The second property satisfies the second GH

condition (cut property).

MINIMUM K-CUT PROBLEM

DEFINITION

• Let G= (V,E) an undirected weighted graph.

• A set of edges of E whose removal leaves k

connected components is called a k-cut.

• The MINIMUM k-CUT problem asks for a

minimum weight k-cut.

ALGORITHM

• Step 1

Compute a GH tree for graph G.

Step 2• Step 2

Output the union of the lightest k-1 cuts of the n-

1 cuts associated with edges of T in G. Let C be

this union.

ANALYSIS

• Lemma :

Let S be the union of cuts in G associated with

l edges of T. Then, the removal of S from G leaves

a graph with at least l+1 components.a graph with at least l+1 components.

• Hence, the union of k-1 cuts picked from T will

form a k-cut in G.

• We will prove that the previous algorithm

obtains an approximation ratio of 2 – 2/k.

PROOF #5

OTHER INTERESTING PROPERTIES OF GH

TREES (1)

• If the GH tree for a graph G contains all n-1

distinct weights, then G can have only one

minimum weight cut!

We can improve the performance of the GH• We can improve the performance of the GH

algorithm by picking vertices for each set which

after the min-cut computation will partition the

set in equally sized subsets.

OTHER INTERESTING PROPERTIES OF GH

TREES (2)

• Let G be a network having an edge e = [i, j] with

parametric capacity c(e) = λ.

• Let GHα be a cut-tree obtained when c(e) = α.

• Let Pi,j
α be the path in GHα between i and j.

• For λ > α it is sufficient to compute |Pi,j
α|-1

minimum cuts in Gλ in order to obtain a cut-tree

GHλ .

For theorists

IMPLEMENTATION

IMPLEMENTATION IN C++ (1)

• To solve the undirected max-flow problem, we

used linear programming (GNU LP API).

• Faster algorithms could be used!

• Based on the above max-flow algorithm, we

implemented an algorithm for the min s-t cut

problem (max-flow and reachability in residue

graph).

IMPLEMENTATION IN C++ (2)

• We implemented the GH algorithm using the

above functions, as well as some basic STL

classes (e.g. set and map).

A quite fast method for computing the collapsed• A quite fast method for computing the collapsed

graph was used.

• The final GH tree is represented as a collection of

weighted edges

IMPLEMENTATION IN C++ (3)

• The current implementation is only console-

based.

• A graphical version is on the road. Damn it, you

linux library dependencies!!linux library dependencies!!

THANK YOU FOR YOUR

ATTENTION !

