(GOMORY-HU TREES : THEORY
@ AND APPLICATIONS

® Koutris Paraschos and Vasileios Syrgkanis

OUTLINE

- Basic definitions

- Why needed?

- Gomory-Hu Construction Algorithm

- A Complete GH Tree Construction Example
- Proof Of Correctness

- Minimum K-Cut Problem

- Implementation

BASIC DEFINITIONS

CUT DEFINITION

- Let G = (V,E) denote a graph and c(e) a weight
function on its edges.

- A cut 1s a partition of the vertices V into two sets
Sand T.

- Any edge (u,v) € Ewith u € Sand v € T 1s said to
be crossing the cut and 1s a cut edge.

- The capacity of a cut is the sum of weights of
the edges crossing the cut.

U-v CUT

- A u-v cut 1s a split of the nodes into two disjoint
sets U and V, such thatu e U, v e V.

- MINIMUM WEIGHT U-V CUT

Given a graph G = (V,E) and two terminals u,v € V,
find the minimum u-v cut.

FLOW DEFINITION

- Given a directed graph G(V,E) in which every edge

(u,v) € E has a non-negative, real-valued capacity
c(u,v).

- We distinguish two vertices: a source s and a sink t.
- A flow network 1s a real function f: VXV — R with the

1.

2.

3.

following properties for all nodes u and v:

Capacity constraints: f(u,v) <c(u,v)
Skew symmetry: f(u,v) = - f(v,u)
Flow conservation: ,unless u=s or u=t

MAX-FLOW

- The maximum flow problem is to find a feasible
flow through a single-source, single-sink flow
network that 1s maximum.

- Max-Flow can be computed in polynomial time
(e.g. Edmonds-Karp algorithm).

- MAX-FLOW MIN-CUT THEOREM

- The maximum amount of flow is equal to the capacity
of the minimal cut.

- Thus, the min s-t cut 1s also computed 1n polynomial
time.

IMPORTANT PUBLICATIONS ON MAX-FLOW
MIN-CUT PROBLEMS

- Ford and Fulkerson, Maximal Flow through a
network (1956).

Introduction of basic concepts of flow and cut. Max

flow min-cut theorem.

- Mayeda, Terminal and Branch Capacity Matrices
of a Communication Net (1960).

Multiterminal problem.

- Chien, Synthesis of a Communication Net (1960).

Synthesis of multiterminal flow network.

WHY NEEDED ?

BASIC PROPERTIES OF CUTS

- We are interested in finding maximal flow/minimal
cut values between all pairs of nodes 1n a graph G =
(V,E), where n = |V |. Any pair of nodes can serve as
the source and the sink.

- How many min-cut computations are needed?

- You would think

- But in fact, n-1 computations are enough!!

why? (PROOF #1) ‘

FL.OW EQUIVALENT GRAPHS

- Two graphs G = (V, E) and G’ = (V, E’) are said to
be flow equivalent iff for each pair of vertices u,v
e V, the minimum u-v cut (maximal u-v flow) in
G 1s the same as in GG

- It turns out that there always exist a G’ which 1s
a tree (Gomory Hu Tree)!!

- Notice that the n-1 edges of the tree correspond
to the n-1 distinct min-cuts in G.

GOMORY-HU (GH) TREE

R.E. GOMORY AND T.C. HU, MULTI-TERMINAL NETWORK FLOWS (1961).

- Given a graph G = (V,E) with a capacity function
c, a cut-tree T = (V,F) obtained from G 1s a tree
having the same set of vertices V and an edge set
F with a capacity function ¢ verifying the
following properties:

1. Equivalent flow tree: for any pair of vertices s

and t, f,;1In G 1s equal to f;;in T , 1.e., the smallest

capacity of the edges on the path between s and t in
T.

2. Cut property: a minimum cut C ;in T 1s also a
minimum cut in G.

GOMORY-HU CONSTRUCTION
ALGORITHM

OUTLINE

- The algorithm maintains a partition of V, (S;, S,
..., 5;) and a spanning tree T on the vertex set {

S., Sy, .0y S, 1.

- Let w’ be the function assigning weights to the
edges of T.

- On each 1teration, T satisfies the following
Invariant :
For any edge (5;, 5;) in T, there are vertices a and b
in S; and S; respectively such that w’ (5;, 5;) = (a,b)
and the cut defined by edge (5;, S;) 1s a minimum a-b
cut in G.

INITIAL STEP

- The algorithm starts with a trivial partition V.
- Proceeds in n-1 iterations.

Initial Partition =

(V={a,b,c,d,e,f})

ITERATION (1)

- Select a set S; in the partition such that |S;|> 2.
- Let u and v be two distinct vertices of S;.

Select d and e

Partitions = (1aj, {bj, {c,d,e}, if})

ITERATION (2)

- Root the current tree at S, and consider the
subtrees rooted at the children of S;.

- Collapse each of the subtrees into a single vertex
to obtain graph G’ (G’ also contains all vertices of

S).
Collapse all other sub-
trees to supernodes

ITERATION (3)

- Find a minimum u-v cut in G’.

- Let (A, B) the partition of the vertices of G’
defining the cut, withu € A, v € B.

Compute min d-e cut CUT = 14

ITERATION (4)

- Compute S;*=S5,n A and S;Y= 5" B.
- Refine the current partition by replacing S; with
the two sets S."and S;".

- The new tree has an edge (S;%, S,¥) with weight
equal to the weight of the cut.

Create new Gomory-Hu edgezi

ITERATION (5)

- How are the other nodes aranged at the tree after
the splitting?

- Consider a subtree T" incident at S; in T. Assume
that the collapsed node corresponding to T’ lies in

A.
- We connect T" by an edge with S;".

- The weight of the edge 1s the same as the weight
of the edge connecting T’ to S,.

- All the other edges retain their weights. ‘

ITERATION (6)

Attach the previous sub-
tree to the cut that it

{b}

belongs

17

{f}

13

G0

14

{d}

TERMINATION

- The algorithm terminates when the partition
consists of singleton vertices.

- Thus, after exactly n-1 iterations!

A COMPLETE GH TREE
CONSTRUCTION EXAMPLE

INITIALIZATION

Initial Partition = (V={a,b,c,d,e,f}) ‘

ITERATION 1

Select b and f

ITERATION 1

Partition; = ({a,b}, {c,d,e,f})

ITERATION 2

Select a,b

17

Partition, = ({a,b}, {c,d,e,1})

ITERATION 2

Partition, = ({a}, {b}, {c,d,e,f})

ITERATION 3

Select c and f CUT= | .
18

4

@ (). A

Partition, = ({a}, {b}, {c,d,e,f})

ITERATION 3

Partitions = (a}, {bj, {c,d,e}, if})

ITERATION 4

Select d and e

NAANS

Partition; = (a}, {bj, {c,d,e}, if})

ITERATION 4

Partition4 = ({a}’ {b}a {C’ e}’ {d}’ {f})

ITERATION 5

Select c and e CUT =
5
6
ﬂ /\ 4
oL 18) @

Partition, = ({aj, {b}, ic, e}, 1}, if})

ITERATION 5

Partition; = ({a}, {b}, {c}, {e}, {d}, if})

FINAL GH TREE

Final Gomory-Hu Tree

PROOF OF CORRECTNESS

BASIC LEMMAS (1)

- Let f(u,v) denote the weight of a minimum u-v
cut in G.

- For u, v, w € V, the following inequality holds:

f(w,v) =2 min { f(u,w), f(w,v) /

- (Generalization:
For u, v, w{, wy, .., w, € V:

fl4,0) 2 min {fl, w,), [0, w5, . (0, 0)
PROOF #2 ‘

BASIC LEMMAS (2)

- Let (A, A’) be a minimum s-t cut, s € A.
- Choose any two vertices x,y € A.

- Obtain graph G’ by collapsing all vertices of A’ to a
single vertex v,..

- The weight of an edge (a, v,) 1s defined to be the sum
of the weights of (a,b), where b € A’.

- A minimum x-y cut in G’ defines a minimum x-y cut
i G !!

- Thus, condensing A’ to a single node does not affect
the value of a minimum cut from x to y.

PROOF #3

PROOF

. INVARIANT (PROOF #4):

- For any edge (5;, 5;) in T, there are vertices a and b
in S; and S; respectively such that

Low (5 5;) =1(a,b)
2. The cut defined by edge (S;, S5;) 1s a minimum a-b
cut in G.
- The first property satisfies the first GH condition
(equivalent flow tree).

- The second property satisfies the second GH
condition (cut property).

MINIMUM K-CUT PROBLEM

DEFINITION

- Let G= (V,E) an undirected weighted graph.

- A set of edges of E whose removal leaves k
connected components 1s called a k-cut.

- The MINIMUM k-CUT problem asks for a

minimum weilght k-cut.

ALGORITHM

- Step 1
Compute a GH tree for graph G.

- Step 2

Output the union of the lightest k-1 cuts of the n-
1 cuts associated with edges of T in G. Let C be
this union.

ANALYSIS

- Lemma :

Let S be the union of cuts in G associated with
1 edges of T. Then, the removal of S from G leaves
a graph with at least I+1 components.

- Hence, the union of k-1 cuts picked from T will
form a k-cut in G.

- We will prove that the previous algorithm
obtains an approximation ratio of 2 — 2/k.

PROOF #5 ‘

OTHER INTERESTING PROPERTIES OF GH
TREES (1)

- If the GH tree for a graph G contains all n-1
distinct weights, then G can have only one
minimum weight cut!

- We can improve the performance of the GH
algorithm by picking vertices for each set which
after the min-cut computation will partition the
set 1n equally sized subsets.

OTHER INTERESTING PROPERTIES OF GH
TREES (2)

- Let G be a network having an edge e = [1, j] with
parametric capacity c(e) =A.

- Let GH® be a cut-tree obtained when c(e) = a.
- Let P;;* be the path in GH® between 1 and }.

- For A > a 1t 1s sufficient to compute |P;; *|-1
minimum cuts in G in order to obtain a cut-tree

GH* .

Q For theorists

IMPLEMENTATION

IMPLEMENTATION IN C++ (1)

- To solve the undirected max-flow problem, we
used linear programming (GNU LP API).

- Faster algorithms could be used!

- Based on the above max-flow algorithm, we
implemented an algorithm for the min s-t cut
problem (max-flow and reachability in residue

ograph).

IMPLEMENTATION IN C++ (2)

- We 1mplemented the GH algorithm using the
above functions, as well as some basic STL
classes (e.g. set and map).

- A quite fast method for computing the collapsed
oraph was used.

- The final GH tree 1s represented as a collection of
welghted edges

IMPLEMENTATION IN C++ (3)

- The current implementation 1s only console-

based.

- A graphical version i1s on the road. Damn it, you
linux library dependencies!!

THANK YOU FOR YOUR

@® ATTENTION !

